細胞画像領域分割のための遺伝的プログラミングにおける ブロート抑制モデルの比較

山口 浩明 Hiroaki YAMAGUCHI

1 はじめに

近年、失明の原因である角膜損傷や角膜減少障害を解 決するために角膜再生医療が注目されている。失明は, 角膜の最も内側に存在する角膜内皮細胞が、一度損傷す ると再生しないことが主な原因の一つである。そこで、 この角膜内皮細胞を新たに培養し、移植することで失明 を防ぐ角膜再生医療の研究が進められている。角膜再生 医療において、培養した角膜内皮細胞が良好な状態であ るかの判断は、細胞密度、形状、大きさなどの特徴量が用 いられ、現在、特徴量を計測するための多くのソフトウェ アの開発や研究が行われている^{?)}.しかし,これらのソ フトでは、特徴量を計測するための細胞領域分割のため に、ソフトに組み込まれている画像処理フィルタを複数 適用させる必要がある.そのため、使用者には画像処理 の知識が必要とされる.また、対象の画像が変わるごと に組み合わせ方が変わるので、使用者の負担が大きい。 そこで、自動で目的の画像処理を構築する Automatic Construction of Tree-structure Image Transformation Programming based on Image Segmentation 手法などが考案されている?).

これらの手法は進化計算の一つである遺伝的プログ ラミング (Genetic Programming:GP) を用い画像処理 の最適な組み合わせを求めている.一方で,先行研究に 用いられている GP では,GP の解探索において重要な 問題とされているブロートの抑制に対して,木の深さ の制限や,サイズに応じたペナルティを与えるといっ た単純な方法しか行っていない.そこで,本研究では, 現在提案されているブロート抑制のための GP モデル を適用し,細胞画像の領域分割に適した GP モデルの 比較を行った.適用した GP のブロート抑制モデルは, Double Tournament^{?)}, Tarpeian^{?)}, Non-destructive Crossover^{?)}, Recombinative Hill-climbing^{?)}, Spatially Structure + Local elitism^{?)} モデルである.

2 GP を用いた画像処理フィルタ構築

一般的に画像処理は既知の単純な画像処理フィルタの 組み合わせとして表現可能とされている.そこで,画像 処理はフィルタの組み合わせ最適化問題と捉え,その最 適化問題の解を求めることで,Fig.1に示すような木構 造状フィルタを構築する.これがGPを用いた画像処理 フィルタの構築手法であり,先行研究としてACTIT や GPIS 手法などが挙げられる.

Fig. 1に示すような木構造フィルタを構築するために,

Fig.1 木構造フィルタ構築の原理

学習データである原画像 I と原画像に対して理想的な処 理画像である目標画像 T のセットと,複数の既知の画像 処理フィルタが用意される.そして原画像から目標画像 からへ近似するように,既知の画像処理フィルタに対し て組み合わせ最適化を行い,木構造フィルタが構築され る.この木構造フィルタでは,終端ノード I から画像が 入力され,各非終端ノードに格納された既知フィルタの 処理を順に行うことで,1 枚の出力画像を作成する.

構築された木構造フィルタの適合度の計算には,評価 関数(1)が用いられる.

$$fitness = \frac{1}{k} \sum_{k=1}^{K} \left\{ 1 - \frac{\sum_{x=1}^{W_x} \sum_{y=1}^{W_y} |O(x,y) - T(x,y)|}{W_x W_y V_{max}} \right\}$$
(1)

適合度は、出力画像 O(x, y) と目標画像 T(x, y) の各ピ クセル値の差分によって求められ、この差分が小さいも のほど優れていると評価する.適合度は 1.0 を最大値と する. K は学習画像セット(原画像と目標画像)の数、 W_x, W_y は画像の横、縦のサイズ、 V_{max} は最大階調値を 示す.

木構造フィルタの GP 個体は,終端ノードに入力する 画像,非終端ノードに既知の画像処理フィルタが格納さ れる.また非終端ノードに格納する既知の画像処理フィ ルタは,入力系統数が1および2のものである,使用す る既知の画像処理フィルタ(非終端ノード)を Table 1, 2に示す.

Table1 1入力フィルタ

		m	110	0147000
Filter	Effect	18	able2	2 入力 ノイルタ
f1	Edge emphasis(sobel)			
f2	Edge emphasis(laplacian)			
f3	Dilation Erosion		Filter	Effect
f4		-	F1	Bounded Sum
f5	Median		F2	Bounded Brod
f6	Light Pixel		F3	Logical Sum
f7	Dark Pixel Large Area Small Area		F4	Logical Prod
f8			F5	Algebraic Sum
f9			F6	
f10	Binarization		F7	Sub
f11	Inversion	-	1.1	Sub
f12	Gradient			
f13	Watershed			

3 GP におけるブロート抑制モデル

遺伝的プログラミング (Genetic Programming:GP) は、John Koza らによって提案された遺伝的アルゴリ ズムを構造型 (木構造, グラフ構造) が表現できるよう に拡張した進化計算手法である^{?)}. この GP の探索過 程では、プログラムサイズが増大するブロートと呼ばれ る現象が問題とされており、ブロートが発生することに よって、探索時間の増加や解の多様性の喪失による局所 解への早期収束,解の過学習などの問題が生じる. この ブロートを抑制するための代表的な手法は木の深さやサ イズ (ノード数)の上限を制限する方法や、個体評価の際 に、サイズが大きい個体ほどペナルティーを与える方法 である. またそれら以外にも様々なブロートを抑制する モデルが提案されている.

本稿では細胞領域分割に適した GP のブロート抑制 モデルの調査を行う.比較したモデルは^{?)}を参考にし, 標準的な GP の他, Double Tournamet^{?)}, Tarpeian^{?)}, Non-destructive crossover(NDC)^{?)}, Recombinative hill-clibming(RHC)^{?)}, Spatial Structure + Elitism (SS+E)^{?)} モデルである.以下にこれらモデルについて の説明を行う.

3.1 Double Tournament

Double Tournament では,適合度とサイズに基づく 2 つのトーナメント層が使用される.一般的に,はじめ に適合度に基づくトーナメントが行われ,その勝者に対 してサイズに基づくトーナメントが行われ,1つの個体 が選択される.Double Tournament 手法で設定するパ ラメータは,適合度トーナメントサイズ F, parsimony トーナメントサイズ D,そして各トーナメントを行う順 序である.

3.2 Tarpeian

Tarpeian 手法では、母集団の平均個体サイズ以上を持 つ一部の個体を競争に参加させないようにする.評価の 際、平均個体サイズ以上の個体には、ある一定の確率 W で非常に悪い適合度を設定する.これによりサイズが大 きい個体は次世代に残る確率が低くなるため、ブロート を抑制することができる.

3.3 Non-Destructive Crossover

GPにおいて通常用いられる交叉は個体に対して破壊 的な作用を持っていると考えられており、イントロンの 指数的成長であるブロートの発生を引き起こすとされて いる.このブロートの発生を抑制する方法として、非破 壊的な性質を持つ交叉手法(Non-destructive crossover :NDC)についての改良が多く提案されている.NDCは 交叉により生成された子個体がその親個体の適合度より も優れている場合のみ、子個体は生存する操作である. NDCを用いることにより、適合度の向上のためにのみ必 要なプログラムの成長が行われるため、ブロートを抑制 することが可能となる.

3.4 Recombinative Hill-Climbing

Recombinative hill-climbing(RHC) は、Hooper らに よって提案された GP と山登り法を組み合わせたモデル である. RHC では、移住母集団と呼ばれる元の母集団は 次世代の母集団を生成するために訪問母集団にコピーさ れる.移住母集団の各個体は訪問母集団のランダムに選 ばれた個体とペアを組み、そのペアに対して子個体を生 成するための遺伝的操作が適用される.RHC において も、生成された子個体は親個体よりも適合度において優 れている場合のみ、移住母集団の親個体と交換される.

3.5 Spatial Structure + Elitism

Spatial Structure(SS) モデルでは、N 個の個体は N 個の要素をもつ行列 W にそれぞれ配置される.また, W[i,j] に配置された個体とそのムーア近傍の 8 個体を部 分母集団と定義する.母集団に対して遺伝的操作を適用 する際,W[i,j] に配置された各個体は訪問され,それぞ れの部分母集団内から親個体を選出し,子個体が生成さ れる.これが SS モデルのアルゴリズムである.また,本 稿では SS モデルに対して,適合度の向上とブロートの抑 制において良好なトレードオフ関係があるとされるロー カルエリートを適用する.ローカルエリートでは,生成 された子個体が訪問されている W[i,j] の個体よりも優 れている場合のみ,その個体と子個体を入替える.

4 細胞領域分割におけるブロート抑制モデル の比較実験

4.1 実験概要

本章では、細胞領域分割問題に対して複数の GP モデ ルを比較し、適したモデルの調査を行う.本実験で使用 した学習画像セットを Fig. 2 に示す. Fig. 2 に示す画像 は光学顕微鏡を用いて 50 倍で撮像された角膜内皮細胞画 像であり、Fig. 2(a) は細胞状態が良好、Fig. 2(b) は不良 であると専門家によって判断されたものである.目標画 像は原画像における細胞壁領域を白、細胞内を黒でマー クした画像であり、画像スケールは 100×100 である.ま た、既知フィルタは Table 1、2 に示すものを用いる.

(a) セットA(細胞状態:良好)(b) セットB(細胞状態:不良)

Fig.2 学習画像セット

比較する GP モデルは 3 章で示した,標準モデル (SGP) に加え, Double Tournament, Tarpeian, NDC, RHC, SS+E モデルである.本実験で使用した GP のパラメー タを Table 3 に示す.本実験では,各モデルにおいて 30 試行行った結果について検討する. Table3 GP Oパラメータ

パラメータ	値
世代数	300
母集団サイズ	484
選択	トーナメント (サイズ:7),
	バイナリトーナメント (SS+É)
交叉率	0.9 (SS + E:1.0)

4.2 実験結果

各モデルにおいて得られた適合度とその解のサイズの 箱髭図を Fig. 3, 4 に示す. Fig. 3(a), 4(a) は, 各試行 で得られた最良解の適合度の平均値を示し, Fig. 3(b), 4(b) は最良解の個体サイズの平均値を示している.ま た, 各モデルにおいて得られた最も低い適合度の出力画 像を Fig. 5, 6 に示す.

得られた適合度において, Fig. 3(a), 4(a) から RHC と SSE モデルがバラツキの少ない高い適合度を示した. Fig. 5, 6 の出力画像においても両モデルは良好な細胞分 割が行われていることが確認でき,他のモデルに比べ高 い探索性能を示した.

解の個体サイズでは, Fig. 3(b), 4(b) の結果から NDC モデルが最も低い値を示している.また, RHC モデルで は, NDC モデルの次に個体サイズが小さく, かつバラツ キの少ない結果となった.

適用対象である学習画像セットでは、細胞状態が不良 である学習画像セット2の方が学習画像セット1に比べ、 全体的に適合度が低く、個体サイズが増加した傾向となっ た.一方で、各モデルの細胞画像分割問題に対する解の 探索結果の傾向は学習セット間で類似していた.以上の 結果から、GPを用いた細胞画像分割問題では、RHCモ デルが高いブロート抑制機能を持ち、かつ高い解の探索 性能を有していることが確認できた.

5 考察

式(1)の評価関数は、学習セットの目標画像とGPに よって生成された出力画像とのピクセルごとの一致度を 表している.この評価関数による最適解は、目標画像と 出力画像の全ピクセルが一致した場合であるが、手作業 で作成した目標画像と全ピクセルが一致する解が生成さ れることはほぼ不可能であると考えられる.また、Fig. 5、6の出力画像の結果からも、適合度が1.0でる最適解 でなくとも、充分に良好な細胞画像領域分割が可能であ ることが確認できる.そのため、本問題では準最適解を いかに効率良く探索できるかが重要な要素となる.

RHCは、局所探索法である山登り法をGPに加えたモ デルであるため、今回比較したモデルの中で最も効率良 く局所解の探索を行えたことが考えられる.SSEモデル では、高い適合度をもつ解を探索することができたが、一 方で個体サイズが増大する傾向がみられた.SSEは高い 探索性能を有していることが先行研究?)で報告されてい る.そのため、SSEは局所解へ収束せず、最適解を探索 し続けたゆえに個体サイズが増加したことが考えられる.

6 まとめ

本稿では、細胞画像領域分割のための GP におけるブ ロート抑制モデルの比較を行った.実験の結果,RHC と SSE モデルは適合度の高い解,RHC と NDC モデルでサ イズの小さい解を生成することが確認できた.そのため、 小さいサイズかつ適合度の高い解を生成することができ る RHC が、細胞画像領域分割のための GP モデルに適 していることが結論づけられる.

参考文献

- Abramoff MD, Magalhaes PJ, and Ram SJ. Image processing with imagej. *Biophotonics International*, Vol. 11, pp. 36–42, 2004.
- T. Nagao and S. Masunaga. Automatic construction of image transformation processes using genetic algorithm. *Processing of ICIP'96*, Vol. 3, pp. 731– 734, 1996.
- S.Luke and L.Panait. A comparison of bloat control methods for genetic programming. *Evol Comput*, Vol. 14, No. 3, pp. 309–344, 2006.
- Whigham.P.A and Dick.G. Implicitly controlling bloat in genetic programming. *Evolutionary Computation, IEEE Transactions on*, Vol. 14, pp. 173– 190, 2010.
- J.Koza. Genetic programming, on the programming of conputers by means of natural selection. MIT Press, 1992.

Fig.5 各モデルにおいて得られた最も低い適合度の出力画像(学習セット1)

Fig.6 各モデルにおいて得られた最も低い適合度の出力画像(学習セット2)