逐次 SA によるタンパク質立体構造予測 小椋 信弥

1 前月からの課題

- 1. ローカルサーチアルゴリズムの検証
- 2. 逐次 SA の検証
- 3. 文献調査

2 実際に行ったこと

2.1 逐次 SA によるタンパク質立体構造予測

逐次 SA の性能検証を行うために,逐次 SA を Metenkephalin, $(Ala)_{10}$,C-peptide の 3 種類のタンパク質の立体構造予測に適用した.実験は岡本と同一のパラメータを用いて行った.また,近傍幅として従来の変動近傍と,新しく固定近傍を用いた.パラメータを Table 1 に示す.

Table 1 パラメータ

	Met-enkephalin	$(Ala)_{10}$	C-peptide
最高温度	2.0		
最低温度	0.1		
近傍幅	$180^{\circ} \rightarrow 54^{\circ}$, $180^{\circ}(\mathrm{Fixed})$		
MCsweep	100000	110000	6000
試行回数		50	

Table 2 および Table 3 に実験結果を示す. なお, ECEPP/2 エネルギー関数に基づいた気相中において, Met-enkephalin は-11.0[kcal/mol], (Ala)₁₀ は-9.7[kcal/mol], C-peptide は-42.0[kcal/mol] 以下の領域で最小エネルギー構造をとることが報告されている.

Table 2 Met-enkephalin と (Ala)₁₀ の結果

	Met-enkephalin		$(Ala)_{10}$	
	変動近傍	固定近傍	変動近傍	固定近傍
最良値	-12.24	-12.24	-10.21	-10.21
最悪値	-6.32	-7.08	2.34	1.92
平均值	-10.04	-9.94	-8.02	-8.49
中央値	-9.99	-9.975	-10.20	-10.21
成功率	11/50	18/50	38/0	39/50

Table 2の Met-enkephalin の結果を見ると,変動近傍と固定近傍では各値には違いがほとんどないものの,最適解発見率は固定近傍の方が良い値を示した.Fig. 1は Met-enkephalinにおける解探索終了時の個体が持つエネルギー値の分布を示す.Fig. 1からも,固定近傍の

Table 3 C-peptide の結果

	II			
	C-peptide			
	変動近傍	固定近傍		
最良値	-37.59	-39.73		
最悪値	-6.06	2.79		
平均值	-23.80	-23.85		
中央値	-23.28	-23.88		
成功率	0/50	0/50		

方が良い性能を示していることが分かる.(Ala)10 においては,若干ではあるが固定近傍の方が良い値を得た.しかし,紙面の都合上省略したが,乱数の種を変えて追加実験を行ったところ,Table 2とは全く異なる結果が得られた.乱数の種を変えると初期個体が変わるため,タンパク質は初期個体への依存性が高いということが考えられる.Table 3の C-peptide については,最適解を発見することはできなかった.また,C-peptide については変動近傍と固定近傍の差がほとんど見られなかった.

Fig. 1 (Ala)₁₀ の解分布

2.2 ローカルサーチアルゴリズムの検討

以前から検討を行っているローカルサーチアルゴリズムの追加実験を行っている.また,ローカルサーチ後に自動的に温度を下げるための手法についても,引き続き改良,検討を行っている.

現在のところ,ローカルサーチを用いた PSA/GAc は,従来の PSA/GAc よりは $(Ala)_{10}$ の立体構造予測において高い性能を示すことが確認できた.しかし,今後さらなる性能向上を図る必要があり,そのための手法を検討中である.

3 今後の予定

- 1. ローカルサーチ後の自動クーリング手法の性能検証
- 2. 逐次 SA の検討
- 3. タンパク質立体構造表示システムの作成