DGA によるタンパク質の構造解析および PDGA の作成 岩橋 崇史

1 目標課題

作成した DGA により,タンパク質の構造解析を行った.また,MPI を用いた PDGA(Parallel Distributed Genetic Algorithm)を作成した.

2 研究の進捗状況

2.1 自作 DGA によるタンパク質の構造解析

構造解析を行うタンパク質は Met-enkephalin を用いた.存在する 19 個の二面角が設計変数にあたる.二面角の値から求まるエネルギー値が-11kcal/mol 以下になれば最適解とみなす.

Table 1の設定で, Met-enkephalinの構造解析を300回試行した.

Table	1	設定
rabie	1	ᅙᄝᄮ

14010 1 122					
島	4	設計変数	19		
個体数/島	100	ビット数/設計変数	9		
移住個体数/島	50	交叉率	1.0		
移住間隔	5	突然変異率	0.007		
エリート保存/島	1	終了世代	1000		

Table 2に300回試行における実行結果を示す. Table 2に示す平均値,中央値および最良値は終了世代(1000世代)の値である.300回試行のうち最適解を7回得ることができた.今回はTable 1の設定でのみ Met-enkephalinの構造解析を行った.今後,パラメータを変えて実行し,パラメータの変更が最適解発見率に影響があるか調べる必要がある.

Table 2 **宝行結果**

平均値	-6.78533	
中央値	-6.7208	
最良値	-12.2109	
最適解発見率	7/300	

2.2 PDGA プログラミング

2.2.1 PDGA の作成

作成した PDGA は一つのプロセスが一つの島を担当する.そして,一定世代ごとに各島内で選ばれた一定個体を別の島と交換する.この移住操作は,MPIを用いたプロセス間通信を用いる.

2.2.2 PDGA と ga2k の性能比較

作成した PDGA と ga2k の性能比較を Table 3 の設定で行った. 試行回数は 300 回である.

Table 3 設定

島	4	設計変数	10
個体数/島	100	ビット数/設計変数	10
移住個体数/島	50	交叉率	1.0
移住間隔	5	突然変異率	0.01
エリート保存/島	1	終了世代	1000

複数のテスト関数を対象問題としたが,その中で Rastrigin 関数と Griewank 関数を解いたときの 300 回試行中央値の解探索履歴を Fig. 1, Fig. 2 に示す.

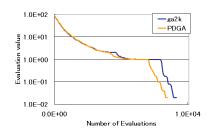


Fig. 1 Rastrigin 関数

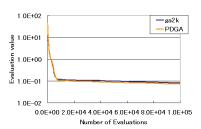


Fig. 2 Griewank **関数**

Fig. 1, Fig. 2 において, PDGA と ga2k の解探索履歴に大きな差はないことがわかった. 他の関数においても同様の結果を得たため, PDGA が正常に動作していることが確認できた.

3 今後の課題

PDGA を用いて,タンパク質の構造解析を行う.また,それと平行して DGA によるタンパク質の構造解析において,パラメータを変更したときの最適解発見率の影響を調べる.