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A Parallel Genetic Algorithm with Distributed Environment Scheme

Mika KANEKO

Abstract: This paper introduces an alternative approach to make the task of choosing optimal
mutation and crossover rates easier by using a parallel and distributed GA with distributed envi-
ronments. It is shown that the best mutation and crossover rates depend on the population sizes
and the problems, and those are different between a single and multiple populations. The proposed
distributed environment GA uses various combinations of the parameters as the fixed values in
the subpopulations. The excellent performance of the new scheme is experimentally demonstrated
for four standard test functions. It is concluded that the distributed environment GA is a useful
method to find the best solution under a given population size and uncertainty for the appropriate
crossover and mutation rates.

1 Introduction

Genetic Algorithms (GAs) are stochastic search al-
gorithms based on the mechanics of natural selection
and natural genetics1) . When GAs are applied to
real domain applications, they require many genera-
tions and a large number of individuals in the popu-
lation, and a huge amount of computational resource
is usually required in order to obtain good solutions.
Therefore, there are a lot of research efforts to im-
plement GAs on parallel computers2) . Researches in
the area of Parallel GAs can be separated into three
categories: global population models, island models,
and massively parallel GAs3) . The last approach is
less useful for current parallel computers since it is
suitable for SIMD-type parallel computers with many
small processors and the current computers are usually
MIMD machines.

The global population models have a single large
population where each processor is assigned to treat
some individuals and each individual has global inter-
action with each other. The island models have multi-
ple and smaller populations and exchange information
among the subpopulations; this exchange is performed
by moving some individuals from one population to an-
other and is known as migration. In this paper, genetic
algorithms with divided subpopulations and the migra-
tion operation are called distributed GAs (DGAs), and
distributed GAs are called parallel DGAs (PDGAs)
when they are performed on parallel computers. Ge-
netic algorithms with a single population are called
SPGAs.

DGAs have another merit in addition to the speedup.
Tanese demonstrated the ability to find fitter individ-

uals than the traditional one4) . Belding extended
Tanese’s work on DGAs to the different fitness func-
tions (the royal road problem) in order to deter-
mine whether her results were specific to the Tanese
functions5) . He showed that DGAs outperformed SP-
GAs.

On the other hand, the performance of each GA de-
pends on a good choice for the crossover and the mu-
tation rates. However, it is difficult to choose a proper
combination of these parameters. Tuson and Ross6)

showed that the most suitable crossover rates also de-
pend upon the problem to be solved. Those results
were obtained for SPGAs, and there is little research
that deals with finding good choices for the crossover
and mutation rates in DGA.

This paper presents the effect of those genetic pa-
rameters in PDGAs, and proposes a new approach
where some of the parameters in the algorithms are
not necessary to be appropriately adjusted.

2 Parallel Distributed GA

DGAs (Distributed GAs) are GAs with multiple sub-
populations and a migration procedure, as shown in
Figure 1. The migration is performed at a certain
migration interval and some individuals are migrated
from one subpopulation to another. The migration
ratio is the ratio of the number of emigrants to the
number of individuals in one subpopulation. Each
subpopulation can be assigned to each processor of a
parallel computer, and DGAs are suitable for paral-
lel processing since inter-processor communication oc-
curs only at the migration. In this case, the GAs are
called PDGAs (Parallel DGAs). The migration topol-
ogy adopted here is a ring with random destinations
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where each subpopulation has one destination, but the
destinations are determined randomly at every migra-
tion period like in Figure 1. The emigrants are selected
randomly in their subpopulation.

Individual

Subpopulation

Fig. 1 Multiple subpopulation and migration

3 Determination of GA

Parameters

3.1 Best GA Parameters

The roles of crossover and mutation are significantly
important in GAs1) . Crossover is employed to per-
form direct information exchange between individuals
in a population, while mutation is employed to avoid
stagnation in evolution.

The performance of each GA depends on making a
good choice for the crossover and the mutation rates.
Empirical studies have shown that the best setting for
the crossover rate depends on the choices made regard-
ing other aspects of the overall algorithm, such as the
settings for other parameters such as population size
and mutation rate, and the selection operator used.
Some commonly used crossover rates vary between 0.45
and 0.957) . Tuson & Ross6) carried out an exhaus-
tive search of the operator probabilities. Their results
show that the most suitable crossover rates also de-
pend upon the problem to be solved. On the other
hand, the best setting for the mutation rate also de-
pends on the particular optimization problems8) , and
the lower bound for the optimal mutation rate is found
to be 1/L9) where L is the length of the binary strings.

However, the effect of crossover and mutation rates
in DGAs has not been clarified yet, and the optimal
values for such parameters have not been found yet.

3.2 Optimization Problems and GA Proce-

dures

The effect of crossover and mutation rates in DGAs
is examined with standard test functions10) .

The optimization problems used here are the mini-
mization of the Rastrigin function (FRa), the Schwefel
function (FSc), the Griewank function (FGr), and the
Rosenbrock function (FRo) with 10 design variables.
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The Rastrigin function has many local minima, but
it has no dependency between its variables. The
Schwefel function also has many local minima and it
has a global minimum at one of the four corners in a
2-dimensional case. The Griewank function has very
small but numerous minima around the global min-
imum although it has a uni-modal shape in a large
scale. This function has an intermediate dependency
between its variables. The Rosenbrock function is a
uni-modal function, but it has a strong dependency
between its variables.

For the Rastrigin, Schwefel, and Griewank functions,
one design variable is represented by 10 bits, and 10 de-
sign variables make the length of the chromosome 100
bits. For the Rosenbrock function, one design variable
is 12 bits, and 10 design variables make the length of
the chromosome 120 bits. The Gray coding is used. A
standard GA with a single-point crossover is used with
the maximum generations of 1000. The fixed crossover
and mutation rates are used in a run, and the combi-
nations of the crossover rates of 0.3, 0.6 and 1.0, and
the mutation rates of 0.1/L, 1/L and 10/L, where L is
the length of the chromosome, are used.

The results are represented by the mean values of the
fitness functions of the fittest individuals over 10 trials
which are extracted from 12 trials omitting highest and
lowest ones. The parallel computer used is nCUBE2E
with 64 processors, and one processor is assigned to
one subpopulation in the PDGA.

Two experiments on the PDGA were conducted with
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9 subpopulations having different subpopulation sizes,
20 and 180, respectively. The overall population sizes
are 180 and 1620, respectively. Here, the notation 180
x 9 means that the subpopulation size is 180 and the
number of subpopulations is 9. The migration rate is
0.3 and the migration interval is 20 generations, but
these values do not have a large sensitivity to the re-
sults.

3.3 Experimental Results

Figure 2 shows the histories of the fitness value for
the 20 x 9 case. When the mutation rate is small
(0.1/L), the better results are obtained with the higher
crossover rates, that is, the appropriate value of the
crossover rate is 1.0.

When the mutation rate is very high (10/L), the best
crossover rate is not clear. In PDGAs, the crossover
plays not only a role of global search, but also a role
of mating between migrated and native individuals.
Therefore, a simple tendency is not observed here.
When the crossover rate is medium (1/L), it can be
seen that the high crossover rate yields good perfor-
mance.

To investigate the effect of the population size on
the best crossover rate on PDGA, similar numerical
experiments with 1620 individuals in total were carried
out with 9 subpopulations. In these experiments, the
best crossover rate is 1.0 for the small and medium
mutation rates and it is 0.3 for a large mutation rate.

In PDGAs, the number of individuals or the sub-
population size is small, and therefore, the diversity
of individuals almost disappears, while the diversity of
individuals among subpopulations are maintained in
PDGAs. In this case, the crossover in each subpopula-
tion does not play any role except for mating between
migrated and native individuals. The crossover rate
of 1.0 promotes the evolution of good solutions by ex-
changing good partial solutions developed in each sub-
population, and it provides the best performance for
the small and medium mutation rates. On the other
hand, the high mutation rate causes diversity in indi-
viduals even for a small subpopulation size. In this
case, the high crossover rate ruins the good solutions,
and the appropriate crossover rate is less than 1.0.

The best values for the crossover and mutation rates
are found to be (Pc, Pm) = (0.1, 1/L) for the Rastrigin
function, (1.0, 0.1/L), (1.0, 1/L) and (0.6, 1/L) for the
Schwefel function, (1.0, 0.1/L) for the Griewank func-

tion, (1.0, 0.1/L) for the Rosenbrock function. Thus,
the best values vary with the problems, and there-
fore, it takes a lot of pre-experiments to find the best
crossover and mutation rates for tuning a PDGA.

4 GA with Distributed Environments

4.1 Distributed Environment

Scheme

From the above results, it was concluded that to
obtain the best results the crossover rate should be
adjusted properly according to the mutation rate, the
population size, and the number of populations as well
as the problems to be solved. But, the determination
of the best mutation rate and the best crossover rate
is a time consuming task.

To overcome this problem, we propose a new PDGA
with a distributed environment scheme. In this
scheme, a whole population is divided into several sub-
populations, and the GA parameters such as the muta-
tion rate and the crossover rate in each subpopulation
are different from each other. The migration operation
was performed similarly to the conventional DGAs.

The distributed environment scheme is schematically
shown in Figure 3, where the thermometers repre-
sent the mutation rates and the heart symbols rep-
resent the crossover rates. High temperature means
a high mutation rate and a big heart symbol means
a high crossover rate. This scheme is called the
PDGA/DE (PDGA/Distributed Environment). With
the PDGA/DE, it can be expected that the various
building blocks of optimum solutions for a particular
problem are evolved in the various subpopulations, and
migration provides the global optimum.

The tuning of the GA parameters is not necessary
with the PDGA/DE since many combinations of such
GA parameters occur in many subpopulations. Conse-
quently, it can be expected that a global optimum can
be easily obtained without any pre-experiments with
the PDGA/DE.

4.2 Effectiveness of PDGA/DE

To demonstrate the effectiveness of the proposed
scheme, a PDGA/DE with 9 subpopulations was
performed. The combination of the mutation and
crossover rates in the 9 subpopulations are shown in
Table 1. The comparison is made for the PDGA/DE
and a PDGA/CE, where CE means constant environ-
ment and the PDGA/CE is the same as the conven-
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Fig. 2 Effect of crossover rate in PDGA (Population size = 20 x 9)

Mutation rate
Crossover rate

Fig. 3 PDGA/DE (Distributed Environment)

tional PDGA with constant values of crossover and
mutation rates in the entire subpopulations. The com-
puter used is a parallel computer, nCUBE2, with 64
processors, and one processor is assigned to one sub-
population.
The performance of the PDGA/DE can be seen in

Figure 4 for the overall population size of 180, where
the function values at 1000 generations are compared.
It should be noticed that smaller values represent good
solutions. This result shows the performance of the
PDGA/DE compared with the results obtained by the
PDGA/CE . The number of combinations of mutation

Table 1 Combinations of mutation and crossover
rates

0.1/L 1/L 10/L

0.3 0.3 - 0.1/L 0.3 - 1/L 0.3 - 10/L

0.6 0.6 - 0.1/L 0.6 - 1/L 0.6 - 10/L

1.0 1.0 - 0.1/L 1.0 - 1/L 1.0 - 10/LC
ro
s
s
o
v
e
r
ra
te

Mutation rate

rates and crossover rates is 9, as shown in Table 1,
and the performance of the PDGA/DE is compared
with these 9 results. It should be noticed that these
fitness values are the average of the fitness of the fittest
individuals over 10 trials out of 12 trials omitting the
highest and lowest.

First of all, the effect of crossover rate and the mu-
tation rate is remarkable, and the determination of the
optimal rates is necessary.

The performances of the PDGA/CE and the
PDGA/DE are compared as follows. It is clear that
the performance of the PDGA/DE is relatively high
although it is not the best. It should be noticed that
the y-axis is in logarithmic scale. The superiority of
the PDGA/DE can be recognized from Figure 4. The
excellent performance is surprising since it has many
subpopulations with improper GA parameters. The
mechanism for providing such excellent performance is
not clear. One possible reason is that there is at least
one best combination of GA parameters, and another
possible reason is that the various environments yields
better solutions than the best but the same environ-
ments. It can be concluded from these results that
the PDGA/DE is a very effective method unless the
optimal set of crossover and mutation rates is known.

4.3 Speedup

In order to find the efficiency of parallel process-
ing for the PDGA/DE, the calculation time in the
PDGA/DE is compared to the one in a SPGA where
the population size is the same as the total popula-
tion size (50 x 9) of the whole subpopulations, and the
best crossover and mutation rates are used among the
values listed before. Figure 5 shows the speedup for
the four optimization problems, where (1) is obtained
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Fig. 4 Comparison of the performance of PDGA/DE with PDGA/CE

at 1000 generations, and (2) is obtained at the same
quality of solutions.

From this figure, the values of the speedup for the
same generations are approximately 8.6 and they are
similar to the ideal speedup which is 9 since 9 proces-
sors are used. It can be recognized that the PDGA/DE
can provide good parallel efficiency since the inter-
processor communication occurs only when the migra-
tion is performed.

On the other hand, the values of the speedup for
the same quality of solutions are between 22 to 25
except for the Rosenbrock function. This surprising
speedup is due to the increase in the performance of
the PDGA/DE, that is, the PDGA/DE provides good
solutions 2.6 to 2.9 times faster than the SPGA. The
histories of the fitness values for the PDGA and the
SPGA are shown in Figure 6, and it is clear that the
PDGA/DE outperforms the SPGA with best crossover
and mutation rates.

For the Rosenbrock function, the PDGA/DE does
not outperform the SPGA with the best crossover and
mutation rates. This is because the Rosenbrock func-
tion has a strong interaction between its variables, and
PDGAs do not show good performance for such prob-
lems. However, the performance of the PDGA/DE
ranks third among the nine results of the SPGA on
various combinations of crossover and mutation rates.

As a result, the PDGA/DE shows approximately
a linear speedup with the number of processors and
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Fig. 5 Computational speedup

it provides a remarkable increase in GA performance
without any consideration on the appropriate values of
the crossover and mutation rates.

5 Conclusions

The effect of crossover and mutation rates on the
performance of GAs with a single population and mul-
tiple populations is clarified, and the optimum rates
vary according to the population size and the problem
to be solved. It is found that the optimal rates for a
multiple population GA is different from the ones for
a single population GA. Thus, the difficulty in deter-
mining the optimal set of crossover and mutation rates
exists also in parallel distributed GAs.

A parallel distributed GA with distributed environ-
ments (PDGA/DE) is proposed, and the superiority of
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Fig. 6 Histries of the fitness for SPGA and
PDGA/DE (Rastrigin)

this scheme is experimentally proved. For four differ-
ent types of problems, the PDGA/DE shows almost
best performance in comparison with a single popu-
lation GA having the optimal crossover and mutation
rates, and it shows relatively high performance in com-
parison with a multiple population GA having the op-
timal crossover and mutation rates. Consequently, the
PDGA/DE is the fastest way to gain the best solution
under the given population size and uncertainty of the
appropriate crossover and mutation rates.
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